\(\int \frac {\cos ^3(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx\) [281]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 18, antiderivative size = 123 \[ \int \frac {\cos ^3(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx=\frac {a b^3 \text {arctanh}\left (\frac {b \cos (x)-a \sin (x)}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{5/2}}-\frac {a b^2 \cos (x)}{\left (a^2+b^2\right )^2}-\frac {a \cos ^3(x)}{3 \left (a^2+b^2\right )}-\frac {a^2 b \sin (x)}{\left (a^2+b^2\right )^2}+\frac {b \sin (x)}{a^2+b^2}-\frac {b \sin ^3(x)}{3 \left (a^2+b^2\right )} \]

[Out]

a*b^3*arctanh((b*cos(x)-a*sin(x))/(a^2+b^2)^(1/2))/(a^2+b^2)^(5/2)-a*b^2*cos(x)/(a^2+b^2)^2-1/3*a*cos(x)^3/(a^
2+b^2)-a^2*b*sin(x)/(a^2+b^2)^2+b*sin(x)/(a^2+b^2)-1/3*b*sin(x)^3/(a^2+b^2)

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.444, Rules used = {3188, 2713, 2645, 30, 3179, 2717, 3153, 212} \[ \int \frac {\cos ^3(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx=\frac {a b^3 \text {arctanh}\left (\frac {b \cos (x)-a \sin (x)}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{5/2}}-\frac {b \sin ^3(x)}{3 \left (a^2+b^2\right )}+\frac {b \sin (x)}{a^2+b^2}-\frac {a^2 b \sin (x)}{\left (a^2+b^2\right )^2}-\frac {a \cos ^3(x)}{3 \left (a^2+b^2\right )}-\frac {a b^2 \cos (x)}{\left (a^2+b^2\right )^2} \]

[In]

Int[(Cos[x]^3*Sin[x])/(a*Cos[x] + b*Sin[x]),x]

[Out]

(a*b^3*ArcTanh[(b*Cos[x] - a*Sin[x])/Sqrt[a^2 + b^2]])/(a^2 + b^2)^(5/2) - (a*b^2*Cos[x])/(a^2 + b^2)^2 - (a*C
os[x]^3)/(3*(a^2 + b^2)) - (a^2*b*Sin[x])/(a^2 + b^2)^2 + (b*Sin[x])/(a^2 + b^2) - (b*Sin[x]^3)/(3*(a^2 + b^2)
)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2645

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Dist[-(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 2713

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rule 2717

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3153

Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Dist[-d^(-1), Subst[Int
[1/(a^2 + b^2 - x^2), x], x, b*Cos[c + d*x] - a*Sin[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2,
0]

Rule 3179

Int[cos[(c_.) + (d_.)*(x_)]^(m_)/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
 Simp[b*(Cos[c + d*x]^(m - 1)/(d*(a^2 + b^2)*(m - 1))), x] + (Dist[a/(a^2 + b^2), Int[Cos[c + d*x]^(m - 1), x]
, x] + Dist[b^2/(a^2 + b^2), Int[Cos[c + d*x]^(m - 2)/(a*Cos[c + d*x] + b*Sin[c + d*x]), x], x]) /; FreeQ[{a,
b, c, d}, x] && NeQ[a^2 + b^2, 0] && GtQ[m, 1]

Rule 3188

Int[(cos[(c_.) + (d_.)*(x_)]^(m_.)*sin[(c_.) + (d_.)*(x_)]^(n_.))/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(
c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[b/(a^2 + b^2), Int[Cos[c + d*x]^m*Sin[c + d*x]^(n - 1), x], x] + (Dist[
a/(a^2 + b^2), Int[Cos[c + d*x]^(m - 1)*Sin[c + d*x]^n, x], x] - Dist[a*(b/(a^2 + b^2)), Int[Cos[c + d*x]^(m -
 1)*(Sin[c + d*x]^(n - 1)/(a*Cos[c + d*x] + b*Sin[c + d*x])), x], x]) /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b
^2, 0] && IGtQ[m, 0] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {a \int \cos ^2(x) \sin (x) \, dx}{a^2+b^2}+\frac {b \int \cos ^3(x) \, dx}{a^2+b^2}-\frac {(a b) \int \frac {\cos ^2(x)}{a \cos (x)+b \sin (x)} \, dx}{a^2+b^2} \\ & = -\frac {a b^2 \cos (x)}{\left (a^2+b^2\right )^2}-\frac {\left (a^2 b\right ) \int \cos (x) \, dx}{\left (a^2+b^2\right )^2}-\frac {\left (a b^3\right ) \int \frac {1}{a \cos (x)+b \sin (x)} \, dx}{\left (a^2+b^2\right )^2}-\frac {a \text {Subst}\left (\int x^2 \, dx,x,\cos (x)\right )}{a^2+b^2}-\frac {b \text {Subst}\left (\int \left (1-x^2\right ) \, dx,x,-\sin (x)\right )}{a^2+b^2} \\ & = -\frac {a b^2 \cos (x)}{\left (a^2+b^2\right )^2}-\frac {a \cos ^3(x)}{3 \left (a^2+b^2\right )}-\frac {a^2 b \sin (x)}{\left (a^2+b^2\right )^2}+\frac {b \sin (x)}{a^2+b^2}-\frac {b \sin ^3(x)}{3 \left (a^2+b^2\right )}+\frac {\left (a b^3\right ) \text {Subst}\left (\int \frac {1}{a^2+b^2-x^2} \, dx,x,b \cos (x)-a \sin (x)\right )}{\left (a^2+b^2\right )^2} \\ & = \frac {a b^3 \text {arctanh}\left (\frac {b \cos (x)-a \sin (x)}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{5/2}}-\frac {a b^2 \cos (x)}{\left (a^2+b^2\right )^2}-\frac {a \cos ^3(x)}{3 \left (a^2+b^2\right )}-\frac {a^2 b \sin (x)}{\left (a^2+b^2\right )^2}+\frac {b \sin (x)}{a^2+b^2}-\frac {b \sin ^3(x)}{3 \left (a^2+b^2\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.67 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.91 \[ \int \frac {\cos ^3(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx=-\frac {2 a b^3 \text {arctanh}\left (\frac {-b+a \tan \left (\frac {x}{2}\right )}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{5/2}}-\frac {3 a \left (a^2+5 b^2\right ) \cos (x)+a \left (a^2+b^2\right ) \cos (3 x)-2 b \left (-a^2+5 b^2+\left (a^2+b^2\right ) \cos (2 x)\right ) \sin (x)}{12 \left (a^2+b^2\right )^2} \]

[In]

Integrate[(Cos[x]^3*Sin[x])/(a*Cos[x] + b*Sin[x]),x]

[Out]

(-2*a*b^3*ArcTanh[(-b + a*Tan[x/2])/Sqrt[a^2 + b^2]])/(a^2 + b^2)^(5/2) - (3*a*(a^2 + 5*b^2)*Cos[x] + a*(a^2 +
 b^2)*Cos[3*x] - 2*b*(-a^2 + 5*b^2 + (a^2 + b^2)*Cos[2*x])*Sin[x])/(12*(a^2 + b^2)^2)

Maple [A] (verified)

Time = 0.60 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.38

method result size
default \(-\frac {4 a \,b^{3} \operatorname {arctanh}\left (\frac {2 a \tan \left (\frac {x}{2}\right )-2 b}{2 \sqrt {a^{2}+b^{2}}}\right )}{\left (2 a^{4}+4 a^{2} b^{2}+2 b^{4}\right ) \sqrt {a^{2}+b^{2}}}+\frac {2 b^{3} \tan \left (\frac {x}{2}\right )^{5}+2 \left (-a^{3}-2 a \,b^{2}\right ) \tan \left (\frac {x}{2}\right )^{4}+2 \left (-\frac {4}{3} a^{2} b +\frac {2}{3} b^{3}\right ) \tan \left (\frac {x}{2}\right )^{3}-4 \tan \left (\frac {x}{2}\right )^{2} a \,b^{2}+2 \tan \left (\frac {x}{2}\right ) b^{3}-\frac {2 a^{3}}{3}-\frac {8 a \,b^{2}}{3}}{\left (a^{4}+2 a^{2} b^{2}+b^{4}\right ) \left (1+\tan \left (\frac {x}{2}\right )^{2}\right )^{3}}\) \(170\)
risch \(\frac {3 i {\mathrm e}^{i x} b}{8 \left (-2 i b a +a^{2}-b^{2}\right )}-\frac {{\mathrm e}^{i x} a}{8 \left (-2 i b a +a^{2}-b^{2}\right )}-\frac {3 i {\mathrm e}^{-i x} b}{8 \left (i b +a \right )^{2}}-\frac {{\mathrm e}^{-i x} a}{8 \left (i b +a \right )^{2}}+\frac {i b^{3} a \ln \left ({\mathrm e}^{i x}+\frac {i b +a}{\sqrt {-a^{2}-b^{2}}}\right )}{\sqrt {-a^{2}-b^{2}}\, \left (a^{2}+b^{2}\right )^{2}}-\frac {i b^{3} a \ln \left ({\mathrm e}^{i x}-\frac {i b +a}{\sqrt {-a^{2}-b^{2}}}\right )}{\sqrt {-a^{2}-b^{2}}\, \left (a^{2}+b^{2}\right )^{2}}+\frac {a \cos \left (3 x \right )}{-12 a^{2}-12 b^{2}}-\frac {b \sin \left (3 x \right )}{12 \left (-a^{2}-b^{2}\right )}\) \(237\)

[In]

int(cos(x)^3*sin(x)/(a*cos(x)+b*sin(x)),x,method=_RETURNVERBOSE)

[Out]

-4*a*b^3/(2*a^4+4*a^2*b^2+2*b^4)/(a^2+b^2)^(1/2)*arctanh(1/2*(2*a*tan(1/2*x)-2*b)/(a^2+b^2)^(1/2))+2/(a^4+2*a^
2*b^2+b^4)*(b^3*tan(1/2*x)^5+(-a^3-2*a*b^2)*tan(1/2*x)^4+(-4/3*a^2*b+2/3*b^3)*tan(1/2*x)^3-2*tan(1/2*x)^2*a*b^
2+tan(1/2*x)*b^3-1/3*a^3-4/3*a*b^2)/(1+tan(1/2*x)^2)^3

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.73 \[ \int \frac {\cos ^3(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx=\frac {3 \, \sqrt {a^{2} + b^{2}} a b^{3} \log \left (\frac {2 \, a b \cos \left (x\right ) \sin \left (x\right ) + {\left (a^{2} - b^{2}\right )} \cos \left (x\right )^{2} - 2 \, a^{2} - b^{2} - 2 \, \sqrt {a^{2} + b^{2}} {\left (b \cos \left (x\right ) - a \sin \left (x\right )\right )}}{2 \, a b \cos \left (x\right ) \sin \left (x\right ) + {\left (a^{2} - b^{2}\right )} \cos \left (x\right )^{2} + b^{2}}\right ) - 2 \, {\left (a^{5} + 2 \, a^{3} b^{2} + a b^{4}\right )} \cos \left (x\right )^{3} - 6 \, {\left (a^{3} b^{2} + a b^{4}\right )} \cos \left (x\right ) - 2 \, {\left (a^{4} b - a^{2} b^{3} - 2 \, b^{5} - {\left (a^{4} b + 2 \, a^{2} b^{3} + b^{5}\right )} \cos \left (x\right )^{2}\right )} \sin \left (x\right )}{6 \, {\left (a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}\right )}} \]

[In]

integrate(cos(x)^3*sin(x)/(a*cos(x)+b*sin(x)),x, algorithm="fricas")

[Out]

1/6*(3*sqrt(a^2 + b^2)*a*b^3*log((2*a*b*cos(x)*sin(x) + (a^2 - b^2)*cos(x)^2 - 2*a^2 - b^2 - 2*sqrt(a^2 + b^2)
*(b*cos(x) - a*sin(x)))/(2*a*b*cos(x)*sin(x) + (a^2 - b^2)*cos(x)^2 + b^2)) - 2*(a^5 + 2*a^3*b^2 + a*b^4)*cos(
x)^3 - 6*(a^3*b^2 + a*b^4)*cos(x) - 2*(a^4*b - a^2*b^3 - 2*b^5 - (a^4*b + 2*a^2*b^3 + b^5)*cos(x)^2)*sin(x))/(
a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^3(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx=\text {Timed out} \]

[In]

integrate(cos(x)**3*sin(x)/(a*cos(x)+b*sin(x)),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 281 vs. \(2 (115) = 230\).

Time = 0.30 (sec) , antiderivative size = 281, normalized size of antiderivative = 2.28 \[ \int \frac {\cos ^3(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx=\frac {a b^{3} \log \left (\frac {b - \frac {a \sin \left (x\right )}{\cos \left (x\right ) + 1} + \sqrt {a^{2} + b^{2}}}{b - \frac {a \sin \left (x\right )}{\cos \left (x\right ) + 1} - \sqrt {a^{2} + b^{2}}}\right )}{{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {a^{2} + b^{2}}} - \frac {2 \, {\left (a^{3} + 4 \, a b^{2} - \frac {3 \, b^{3} \sin \left (x\right )}{\cos \left (x\right ) + 1} + \frac {6 \, a b^{2} \sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}} - \frac {3 \, b^{3} \sin \left (x\right )^{5}}{{\left (\cos \left (x\right ) + 1\right )}^{5}} + \frac {2 \, {\left (2 \, a^{2} b - b^{3}\right )} \sin \left (x\right )^{3}}{{\left (\cos \left (x\right ) + 1\right )}^{3}} + \frac {3 \, {\left (a^{3} + 2 \, a b^{2}\right )} \sin \left (x\right )^{4}}{{\left (\cos \left (x\right ) + 1\right )}^{4}}\right )}}{3 \, {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4} + \frac {3 \, {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}} + \frac {3 \, {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sin \left (x\right )^{4}}{{\left (\cos \left (x\right ) + 1\right )}^{4}} + \frac {{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sin \left (x\right )^{6}}{{\left (\cos \left (x\right ) + 1\right )}^{6}}\right )}} \]

[In]

integrate(cos(x)^3*sin(x)/(a*cos(x)+b*sin(x)),x, algorithm="maxima")

[Out]

a*b^3*log((b - a*sin(x)/(cos(x) + 1) + sqrt(a^2 + b^2))/(b - a*sin(x)/(cos(x) + 1) - sqrt(a^2 + b^2)))/((a^4 +
 2*a^2*b^2 + b^4)*sqrt(a^2 + b^2)) - 2/3*(a^3 + 4*a*b^2 - 3*b^3*sin(x)/(cos(x) + 1) + 6*a*b^2*sin(x)^2/(cos(x)
 + 1)^2 - 3*b^3*sin(x)^5/(cos(x) + 1)^5 + 2*(2*a^2*b - b^3)*sin(x)^3/(cos(x) + 1)^3 + 3*(a^3 + 2*a*b^2)*sin(x)
^4/(cos(x) + 1)^4)/(a^4 + 2*a^2*b^2 + b^4 + 3*(a^4 + 2*a^2*b^2 + b^4)*sin(x)^2/(cos(x) + 1)^2 + 3*(a^4 + 2*a^2
*b^2 + b^4)*sin(x)^4/(cos(x) + 1)^4 + (a^4 + 2*a^2*b^2 + b^4)*sin(x)^6/(cos(x) + 1)^6)

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.63 \[ \int \frac {\cos ^3(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx=\frac {a b^{3} \log \left (\frac {{\left | 2 \, a \tan \left (\frac {1}{2} \, x\right ) - 2 \, b - 2 \, \sqrt {a^{2} + b^{2}} \right |}}{{\left | 2 \, a \tan \left (\frac {1}{2} \, x\right ) - 2 \, b + 2 \, \sqrt {a^{2} + b^{2}} \right |}}\right )}{{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {a^{2} + b^{2}}} + \frac {2 \, {\left (3 \, b^{3} \tan \left (\frac {1}{2} \, x\right )^{5} - 3 \, a^{3} \tan \left (\frac {1}{2} \, x\right )^{4} - 6 \, a b^{2} \tan \left (\frac {1}{2} \, x\right )^{4} - 4 \, a^{2} b \tan \left (\frac {1}{2} \, x\right )^{3} + 2 \, b^{3} \tan \left (\frac {1}{2} \, x\right )^{3} - 6 \, a b^{2} \tan \left (\frac {1}{2} \, x\right )^{2} + 3 \, b^{3} \tan \left (\frac {1}{2} \, x\right ) - a^{3} - 4 \, a b^{2}\right )}}{3 \, {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} {\left (\tan \left (\frac {1}{2} \, x\right )^{2} + 1\right )}^{3}} \]

[In]

integrate(cos(x)^3*sin(x)/(a*cos(x)+b*sin(x)),x, algorithm="giac")

[Out]

a*b^3*log(abs(2*a*tan(1/2*x) - 2*b - 2*sqrt(a^2 + b^2))/abs(2*a*tan(1/2*x) - 2*b + 2*sqrt(a^2 + b^2)))/((a^4 +
 2*a^2*b^2 + b^4)*sqrt(a^2 + b^2)) + 2/3*(3*b^3*tan(1/2*x)^5 - 3*a^3*tan(1/2*x)^4 - 6*a*b^2*tan(1/2*x)^4 - 4*a
^2*b*tan(1/2*x)^3 + 2*b^3*tan(1/2*x)^3 - 6*a*b^2*tan(1/2*x)^2 + 3*b^3*tan(1/2*x) - a^3 - 4*a*b^2)/((a^4 + 2*a^
2*b^2 + b^4)*(tan(1/2*x)^2 + 1)^3)

Mupad [B] (verification not implemented)

Time = 22.97 (sec) , antiderivative size = 291, normalized size of antiderivative = 2.37 \[ \int \frac {\cos ^3(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx=\frac {2\,a\,b^3\,\mathrm {atanh}\left (\frac {2\,a^4\,b+2\,b^5+4\,a^2\,b^3-2\,a\,\mathrm {tan}\left (\frac {x}{2}\right )\,\left (a^4+2\,a^2\,b^2+b^4\right )}{2\,{\left (a^2+b^2\right )}^{5/2}}\right )}{{\left (a^2+b^2\right )}^{5/2}}-\frac {\frac {2\,\left (a^3+4\,a\,b^2\right )}{3\,\left (a^4+2\,a^2\,b^2+b^4\right )}+\frac {4\,{\mathrm {tan}\left (\frac {x}{2}\right )}^3\,\left (2\,a^2\,b-b^3\right )}{3\,\left (a^4+2\,a^2\,b^2+b^4\right )}-\frac {2\,b^3\,\mathrm {tan}\left (\frac {x}{2}\right )}{a^4+2\,a^2\,b^2+b^4}+\frac {2\,{\mathrm {tan}\left (\frac {x}{2}\right )}^4\,\left (a^3+2\,a\,b^2\right )}{a^4+2\,a^2\,b^2+b^4}-\frac {2\,b^3\,{\mathrm {tan}\left (\frac {x}{2}\right )}^5}{a^4+2\,a^2\,b^2+b^4}+\frac {4\,a\,b^2\,{\mathrm {tan}\left (\frac {x}{2}\right )}^2}{a^4+2\,a^2\,b^2+b^4}}{{\mathrm {tan}\left (\frac {x}{2}\right )}^6+3\,{\mathrm {tan}\left (\frac {x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {x}{2}\right )}^2+1} \]

[In]

int((cos(x)^3*sin(x))/(a*cos(x) + b*sin(x)),x)

[Out]

(2*a*b^3*atanh((2*a^4*b + 2*b^5 + 4*a^2*b^3 - 2*a*tan(x/2)*(a^4 + b^4 + 2*a^2*b^2))/(2*(a^2 + b^2)^(5/2))))/(a
^2 + b^2)^(5/2) - ((2*(4*a*b^2 + a^3))/(3*(a^4 + b^4 + 2*a^2*b^2)) + (4*tan(x/2)^3*(2*a^2*b - b^3))/(3*(a^4 +
b^4 + 2*a^2*b^2)) - (2*b^3*tan(x/2))/(a^4 + b^4 + 2*a^2*b^2) + (2*tan(x/2)^4*(2*a*b^2 + a^3))/(a^4 + b^4 + 2*a
^2*b^2) - (2*b^3*tan(x/2)^5)/(a^4 + b^4 + 2*a^2*b^2) + (4*a*b^2*tan(x/2)^2)/(a^4 + b^4 + 2*a^2*b^2))/(3*tan(x/
2)^2 + 3*tan(x/2)^4 + tan(x/2)^6 + 1)